Search results for "Kirkwood-Buff integrals"

showing 3 items of 3 documents

Bridging scales with thermodynamics: from nano to macro

2014

We have recently developed a method to calculate thermodynamic properties of macroscopic systems by extrapolating properties of systems of molecular dimensions. Appropriate scaling laws for small systems were derived using the method for small systems thermodynamics of Hill, considering surface and nook energies in small systems of varying sizes. Given certain conditions, Hill's method provides the same systematic basis for small systems as conventional thermodynamics does for large systems. We show how the method can be used to compute thermodynamic data for the macroscopic limit from knowledge of fluctuations in the small system. The rapid and precise method offers an alternative to curre…

Surface (mathematics)PhysicsNanothermodyamicsCurrent (mathematics)Scaling lawsBasis (linear algebra)ComputationBinary numberThermodynamicsIndustrial and Manufacturing EngineeringKirkwood-Buff integralsThermodynamic factorsThermodynamic limitGeneral Materials ScienceNanothermodyamics; Scaling laws; Kirkwood-Buff integrals; Thermodynamic factors; Diffusion coefficientStatistical physicsElectrical and Electronic EngineeringDiffusion (business)MacroDiffusion coefficientAdvances in Natural Sciences: Nanoscience and Nanotechnology
researchProduct

Kirkwood–Buff Integrals Using Molecular Simulation: Estimation of Surface Effects

2020

Kirkwood&ndash

Surface (mathematics)PhysicsWork (thermodynamics)Finite volume method010304 chemical physicsScale (ratio)nanothermodynamicsGeneral Chemical Engineeringsurface effectsExtrapolationInverse02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesArticlemolecular dynamicsKirkwood-Buff integralslcsh:Chemistrylcsh:QD1-9990103 physical sciencesThermodynamic limitGeneral Materials ScienceStatistical physics0210 nano-technologyScalingNanomaterials
researchProduct

Kirkwood-Buff integrals from molecular simulation

2019

The Kirkwood-Buff (KB) theory provides a rigorous framework to predict thermodynamic properties of isotropic liquids from the microscopic structure. Several thermodynamic quantities relate to KB integrals, such as partial molar volumes. KB integrals are expressed as integrals of RDFs over volume but can also be obtained from density fluctuations in the grand-canonical ensemble. Various methods have been proposed to estimate KB integrals from molecular simulation. In this work, we review the available methods to compute KB integrals from molecular simulations of finite systems, and particular attention is paid to finite-size effects. We also review various applications of KB integrals comput…

Work (thermodynamics)010405 organic chemistryChemistryGeneral Chemical EngineeringIsotropySolution theoryStructure (category theory)Finite systemGeneral Physics and AstronomyMolecular simulation02 engineering and technology01 natural sciences0104 chemical sciencesKirkwood-Buff integrals020401 chemical engineeringVolume (thermodynamics)Statistical physicsKirkwood-Buff theoryMolecular simulations0204 chemical engineeringPhysical and Theoretical ChemistryDensity fluctuationsSmall system methodFluid Phase Equilibria
researchProduct